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Abstract

We first provide background on the “nuts and bolts” of a bug bounty platform: a two-sided marketplace that connects firms

and individual security researchers (“ethical” hackers) to facilitate the discovery of software vulnerabilities. Researchers get

acknowledged for valid submissions, but only the first submission of a distinct vulnerability is rewarded money in this tournament-

like setting. We then empirically examine the effect of an exogenous external shock (COVID-19) on Bugcrowd, one of the leading

platforms. The shock presumably reduced the opportunity set for many security researchers who might have lost their jobs or

been placed on a leave of absence. We show that the exogenous shock led to a huge rightward shift in the supply curve and

increased the number of submissions and new researchers on the platform. During the COVID period, there was a significant

growth in duplicate (already known) valid submissions, leading to a lower probability of winning a monetary reward. The supply

increase resulted in a significant decline in the equilibrium price of valid submissions, mostly due to this duplicate submission

supply-side effect. The results suggest that had there been a larger increase in the number of firms and bug bounty programs

on the platform, many more unique software vulnerabilities could have been discovered.
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Introduction

While cybersecurity attacks occur for many reasons and in dif-

ferent ways, exploiting software vulnerabilities (also known as

bugs) is one of the primary attack vectors. Bug bounty programs

and platforms utilize crowd-sourcing to find these bugs, with the

notion that “Given enough eyeballs, all bugs are shallow” [1, p.

29].

Bug bounty programs are a structured and legal way for

security researchers to be rewarded for finding software vul-

nerabilities. These programs enable organizations to connect

with ethical hackers (hereafter, researchers) whose cybersecurity

expertise and knowledge complement that of the organiza-

tions’ development and testing teams. Such programs allow

researchers to be rewarded legally for the vulnerabilities they

find.

Bug bounty platforms are two-sided markets that bring bug

bounty programs and researchers together. The programs are

structured as tournaments where companies pay monetary re-

wards only for unique vulnerabilities found. Top researchers

might get invited to private programs where only selected re-

searchers can participate, thereby increasing the probability of

being the first to find and report a vulnerability.

The popularity of bug bounty programs and platforms is

constantly increasing, potentially building the foundation for

an overall higher demand. Governmental agencies have begun

to use bug bounty programs. In 2021, the US-based Cyber-

security & Infrastructure Security Agency (CISA) launched a

federal civilian enterprise-wide crowdsourced vulnerability dis-

closure policy platform.1 Additionally, cyber insurance firms

have begun to recognize the benefits of firms participating in a

bug bounty program.2

1 https://www.cisa.gov/blog/2021/07/29/cisa-announces-n

ew-vulnerability-disclosure-policy-vdp-platform.
2 Marsh, a large global insurance firm, identifies as part of its
“cyber catalyst” program security products that reduce cyber

risks. Participation in the HackerOne bug bounty platform is

considered a “certified” product that can lower cyber insurance
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Bug bounty programs and platforms are part of a more gen-

eral “gig economy” trend where enterprises supplement labor,

and workers supplement income with gig work. Gig work plat-

forms provide enterprises with skilled and flexible labor access

and workers with opportunities to compete in global job mar-

kets. Furthermore, they facilitate “bridge employment” (i.e.,

temporary employment between career jobs) and provide in-

come opportunities in downtimes when the market does not

accommodate full-time employment. Indeed, studying the ride-

sharing market, Koustas [2] finds that, on average, driving for

gig platforms replaced 73% of lost income from a primary job.

Moreover, taking advantage of gig work platforms during bad

times helps overcome periods of income volatility. Similarly,

Collins et al. [3] find that workers typically start new platform

work in times of a personal income crisis.

Employing a unique data-set provided by Bugcrowd,3 we

document the effect of an exogenous shock – the COVID-19

pandemic – on the market for vulnerabilities within the bug

bounty platform. The data covers the 2017-21 period, and we

focus each year on the three months from March to May. We

examine the impact of the COVID-19 shock represented by the

2020 period on the demand for vulnerabilities by participat-

ing organizations and the supply of vulnerabilities from active

researchers.

Since its launch, Bugcrowd’s platform has hosted more than

2,400 programs offered by more than 1,000 organizations while

attracting more than 30,000 researchers who made at least one

submission to a program. We have data on both valid and invalid

submissions; valid submissions are correctly identified vulnera-

bilities within the defined scope of a program. While only the

first researcher to discover a valid vulnerability is eligible for a

monetary incentive, our data also includes details on duplicate

valid submissions. In these instances, a researcher accurately

identified a vulnerability but was not the first to report it and,

therefore, was not compensated. We can calculate the average

payment for valid submissions by considering both paid and

duplicate submissions. This variable turns out to be a key in

comprehending the impact of the COVID-19 shock.

We develop a heuristic supply-and-demand model follow-

ing the notion that information security can be explained more

clearly using the language of microeconomics [4]. We define valid

submissions as the relevant product and the average monetary

reward for valid submissions as the price. Our analysis shows

that the COVID-19 shock substantially shifted the supply curve

by significantly increasing the number of active researchers and

submissions and shifted the demand curve more moderately

by slightly increasing the growth in programs with submis-

sion activity. These shifts, combined, significantly increased

the number of valid submissions primarily due to the substan-

tial growth in the number of duplicates, reflecting the much

more significant supply curve shift. Consequently, there was a

large decrease in the average equilibrium price for valid submis-

sions because valid duplicates do not receive a monetary reward.

Our regression analysis suggests that the COVID-19 main ef-

fect on the paid rewards was mostly for high-priority (critical)

valid submissions, and it was significant both statistically and

prices (https://www.marsh.com/us/services/cyber-risk/pr
oducts/cyber-catalyst.html).
3 https://bugcrowd.com/.

economically: our results show a $640 average reduction in

payments for critical vulnerabilities during the shock period.

The COVID-19 shock “threw” the market for vulnerabilities

out of a previously more-or-less stable equilibrium while im-

pacting all ecosystem players. It presumably reduced the outside

opportunity set for researchers who lost their jobs or were placed

on a leave of absence during that period. These researchers likely

had more time on hand to look for bug bounty program vulner-

abilities. On the demand side, there was a smaller increase in

new programs relative to previous periods, even though many

organizations adapted to the pandemic by allowing their em-

ployees to work from home, potentially enabling “black hat”

hackers to take advantage of the increased security vulnerabil-

ities of the less effective home security systems and the newly

deployed remote access solutions.4 This is likely because of a

relatively long start-up time for new bug bounty programs.

First, we examine the implications for the researcher com-

munity. The ratio of paid to valid submissions, representing

the probability of being paid, decreased over time, reflecting

a slightly increased competitive trend. However, this ratio fell

dramatically during the COVID period and bounced back in

the following 2021 period. The reduction in the average equilib-

rium price for a valid submission due to the COVID-19 shock

presumably dampened the incentives of individual researchers

to search for vulnerabilities.5 Specifically, there was less than

a one-in-four chance of being paid for a valid submission in

2020, compared to an average of one-in-three in 2019 and 2021.

The dramatic reduction in the paid-to-valid submissions ratio

in 2020 is solely due to the supply side, and it accounts for most

of the equilibrium price decline for valid submissions.

We also examine the implications for the general public. The

discovery of vulnerabilities in products and services (followed

by patching) has a positive externality on the direct consumers

and the public. Consequently, the following counterfactual argu-

ment elaborated in the Policy and Platform Implications section

can be made: Had the demand response met the supply in

the COVID period, the total number of distinct submissions

could have been 64% greater than the actual count. This coun-

terfactual implies there might have been a missed opportunity

to examine more software and find more unique vulnerabilities

during the COVID-19 shock period.

Furthermore, the COVID-19 shock provides a unique op-

portunity to address key public policy issues associated with

crowd-sourcing and the gig economy. An often-mentioned bene-

fit of the gig economy is that the response to an external shock

on the supply side should be almost instantaneous. Here, we

show that this was indeed the case, and we quantify the ef-

fects of the increased supply of new researchers and submissions,

who likely joined when the value of outside options was low-

ered. However, for the gig economy to act as a genuine means

to mitigate large income drops during bad times, one needs to

encourage a significant response from the demand side.

4 Consequently, many organizations experienced a significant

increase in the number and severity of security incidents as
the attack surface expanded. The change in attack patterns
following COVID-19 has been documented extensively by mar-

ket analysts, cyber-security vendors, and governmental agencies.
See also Lallie et al. [5].
5 Indeed, the total number of submissions fell dramatically in
2021 relative to 2020.
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Finally, we look at the implications of the COVID-19 shock

on the organizations and the platform. Though the vast increase

in the number of submissions did not result in a significant

growth in the number of unique vulnerabilities discovered, it

did increase the costs associated with submission processing.

These transaction costs may be split between the platform and

the organization as determined by their specific contract and ap-

proved procedures.6 Regardless of the party who bore this cost,

it increased significantly during COVID-19 because many more

duplicate submissions were processed, and their value to the or-

ganization (already aware of these discovered vulnerabilities) is

zero.7

The paper proceeds as follows: In the Background section,

we elaborate more on the real-world dynamics of vulnerabil-

ities and the literature associated with bug bounty programs

and platforms. The Bugcrowd Platform section includes details

on engagement rules and submission workflow. The Data sec-

tion describes our data-set, and the Heuristic Model section

suggests a supply-and-demand model that motivates our analy-

sis. The Effect of COVID-19 Exogenous Shock section presents

our main results related to the platform’s supply side, demand

side, and equilibrium properties. Finally, the Policy and Plat-

form Implications section briefly discusses the findings and their

meaning.

Background

The life cycle of a vulnerability (or “bug”) starts with its cre-

ation during coding. Assuming that adversaries do not find the

vulnerability first, it will likely become known to the vendor

either by internal testing or due to responsible disclosure done

by a researcher, also known as a white-hat or ethical hacker.8

Once discovered and verified, a patch that eliminates the vul-

nerability will be offered to all users of the affected product.

This process is similar whether the vulnerability is found in a

software product or an online service. For a product, the ven-

dor will most likely release a technical security notification to

its customers (pre-scheduled or emergency) detailing the impor-

tance and associated risks of the patched vulnerability and the

affected software versions. The vulnerability will also be listed

in publicly available feeds such as CVE and NVD.9

There are markets for vulnerabilities as a product, both from

the adversarial and defense perspectives. In this paper, we fo-

cus only on the legal defensive market, sometimes referred to

as the “white market,” rather than on the “black market” for

exploits.10

6 Our data-set does not include details on the agreements,

prices, or costs associated with the platform-organization joint
activity.
7 In line with Herley [6], these costs and other externalities

should not be neglected.
8 If a firm discovers its own vulnerabilities, there is no market

for ”white hat hackers.” See Choi et al. [7] for a theoretical

model that addresses disclosure in this setting.
9 CVE® is a list of publicly known cyber-security vulnerabil-
ities maintained by the MITRE Corporation. It feeds NIST’s

US National Vulnerability Database (NVD), which adds more

context.
10 If an adversary discovers the vulnerability before the firm,

they might produce a zero-day (0-day) exploit, best defined as

Bug Bounty Platforms as Market Intermediaries

As Malladi and Subramanian [9] note, there are three categories

of security crowd-sourcing markets for vulnerabilities.

• The first category is institutional bug bounty programs

hosted directly by software vendors who set their own

policies and compensation plans. They solicit external re-

searchers to find bugs in their products for monetary and

non-monetary incentives. While this is a feasible option for

large firms, it typically is not cost-effective for most firms.

• The second category is via private intermediaries that pur-

chase vulnerabilities from researchers to sell them further

downstream.

• The third category, which is the focus of this paper, is

bug bounty platforms (intermediaries) that connect orga-

nizations and security researchers via a “two-sided” network

or platform.

Economists often refer to products and services that bring

together different groups of users as “two-sided markets” or

“two-sided networks” [10]. These markets take many forms.

Some common examples of such two sides brought together by

a platform owner are buyers and sellers (Amazon), media con-

sumers and advertisers (Facebook), application developers and

device makers (Apple iOS), or users and application developers

(Google Cloud Platform).11

Platform-based markets are typically characterized by indi-

rect (cross-side) network effects [12, 13, 14], where each side’s

perceived value of the platform increases with the number of

users on the other side.12 In general, the platform provides the

infrastructure and rules of engagement to attract both sides of

the market. Two-sided platforms create value and improve eco-

nomic efficiency [10, 16], possibly by reducing the transaction

costs faced by distinct groups of participants.13

Bug bounty platforms are two-sided markets connecting or-

ganizations that want to crowd-source software security with

researchers. Ideally, a platform hosts many programs for many

organizations and has many high-quality active researchers. The

researcher who is the first to find and report a novel vulnera-

bility receives a payment (bounty). Bug bounty platforms thus

create a tournament-like arrangement and establish the rules of

engagement and submission procedures. However, the firm is

the one that determines the program structure, testing scope,

and the range of rewards to be paid to researchers.

In two-sided bug bounty platforms, individual researchers

are sellers, the organizations initiating the bounty programs are

buyers, and the discovered vulnerabilities are products. The

demand comes from firms interested in protecting their software

products or services against exploits used by adversaries. The

an “exploit without a patch.” There is a “black market” for
zero-day vulnerabilities, as described by Ablon and Bogart [8].
11 Arce [11] considers cloud services to be a two-sided market.
12 New platforms are often confronted with the problem that
both sides will only join the platform when they expect sufficient
numbers of the other group to join. This initial problem of get-

ting all sides of the market on board is called the chicken-and-egg
problem [15].
13 This is in line with Munger [17], who argues that reducing
transaction costs is the driving force of the sharing economy.
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market’s supply side consists of researchers eager to get paid for

their expertise.

The magnitude of the paid bounties is at the company’s

discretion and depends primarily on the severity of the vulner-

ability found. Payments, however, are also affected by factors

such as the program’s maturity – the more mature the program,

the harder it is to find new vulnerabilities, and thus the reward

is higher – how well was the target tested internally before the

program was launched, and more. In addition to monetary pay-

ments, the researchers are rewarded with reputation points that

determine their relative rank within the platform and may help

them receive invitations to work in private bounty programs,

where participation is by invitation only.

Literature on Bug Bounty Programs and Platforms

Empirical work on bounty programs has examined vulnerability

trends, responses by hackers, and reward structures of partici-

pating organizations. Zhao et al. [18] studied publicly available

data of two representative web vulnerability discovery ecosys-

tems (Wooyun and HackerOne) and showed that white hat

communities in both ecosystems continuously grow. Further-

more, monetary incentives have a significant positive correlation

with the number of vulnerabilities reported. Maillart et al. [19]

have analyzed a data-set of public bounty programs and found

that researchers tend to switch to newly launched bounty pro-

grams at the expense of existing ones. Malladi and Subramanian

[9] studied 41 public bounty programs and examined issues in-

volved with their implementation. Algarni and Malaiya [20] used

an open vulnerability database to explore the most successful

researchers’ careers, motivations, and methods. They concluded

that individuals external to firms discovered a significant per-

centage of vulnerabilities and that financial reward is a primary

motivation for participation, especially for Eastern European

researchers. Sridhar and Ng [21] utilize a proprietary data-set

to empirically show that bounty platforms are cost-effective for

companies to improve their security posture and that hackers

are relatively price insensitive.

The Bugcrowd Platform

Rules of Engagement

The rules of engagement between researchers and organizations

on a bug bounty platform are structured to benefit both sides:

they encourage researchers to practice responsible disclosure of

high-value vulnerabilities and ensure the timely response and

payment of organizations once a valid and unique bug is sub-

mitted. Submissions are either accepted if they are valid or

rejected if they are invalid. Valid submissions can be unique

or duplicate, i.e., submissions that report vulnerabilities other

researchers have already registered.

The researched Bugcrowd platform offers two types of pro-

grams. Managed Bug Bounty programs (MBBs) provide a

monetary reward and points to the first researcher who sub-

mits a unique, valid vulnerability. Researchers who later find

the same vulnerability receive only points for their valid “dupli-

cate” submission.14 On the other hand, Vulnerability Disclosure

14 In rare cases, organizations may reward researchers who

submit valid duplicate entries to an MBB program to acknowl-
edge the researcher’s effort and motivate their future work. We

Programs (VDPs) only offer points to researchers without any

monetary rewards. The points researchers earn are reported in

a monthly and all-time leaderboard, reflecting their ranking.15

The “recognition” researchers receive for finding meaningful

(high-priority) vulnerabilities and their demonstrated skills and

interests may increase their likelihood of receiving invitations to

work on private MBB programs.

Organizations pre-select the program type, considering the

differences between VDPs and MBBs. VDPs are viewed as

a cost-predictable, baseline security structure that encourages

anyone to report any vulnerability, thus meeting compliance

requirements. In contrast, MBBs incentivize discovering high-

priority vulnerabilities and may be used to test more specific

assets.16

We accounted for both MBB and VDP programs when an-

alyzing the COVID-19 effect on supply and demand. However,

we only accounted for MBB programs that reward researchers

with dollar payments when referring to equilibrium price ef-

fects and their related regressions. Our results are qualitatively

unchanged if we separately analyze the point rewards of VDP

programs, as shown in Appendix B.

The rest of this section will detail the submission workflow

and the bounty pricing dynamics of the researched platform.

Submission Workflow

The workflow for submissions over Bugcrowd’s platform is out-

lined in Figure 1. Before starting a program, the organization

must make two strategic decisions. The first decision is whether

it will be an MBB or VDP. The second decision is whether it

will be private or public. The program’s goals and scope are

then defined, including the specific software components to be

tested, such as web applications, APIs, or mobile versions. Next,

the organization develops a researcher engagement plan and de-

termines the program’s duration (continuous or ad-hoc). The

organization also establishes the payment range for a unique

submission in advance based on its priority. This information

is shared with researchers through the program’s portal on the

platform. Thus, they know the potential rewards they could

receive for a unique discovery in a particular priority and pro-

gram. This actual payment represents the economic value of a

submission to the organization.

Submissions are categorized according to a priority scale of

P1 to P5, with P1 being critical vulnerabilities and P5 be-

ing informational weaknesses that may not even be fixed. The

platform provides a well-defined Vulnerability Rating Taxon-

omy (VRT) for researchers to determine the priority of their

submission.17

Once the program is launched, organizations should pro-

cess incoming submissions after they have been verified, triaged

have included these payments in our analysis, but the results
are qualitatively unchanged if we exclude these “runner-up”
payments.
15 https://bugcrowd.com/leaderboard (lower rank is better).
16 https://www.bugcrowd.com/blog/vulnerability-disclos

ure-program-or-managed-bug-bounty-how-to-determine-whi

ch-program-is-best-for-you/.
17 A resource outlining Bugcrowd’s baseline priority rating for
common vulnerabilities: https://bugcrowd.com/vulnerabili

ty-rating-taxonomy/.

https://bugcrowd.com/leaderboard
https://www.bugcrowd.com/blog/vulnerability-disclosure-program-or-managed-bug-bounty-how-to-determine-which-program-is-best-for-you/
https://www.bugcrowd.com/blog/vulnerability-disclosure-program-or-managed-bug-bounty-how-to-determine-which-program-is-best-for-you/
https://www.bugcrowd.com/blog/vulnerability-disclosure-program-or-managed-bug-bounty-how-to-determine-which-program-is-best-for-you/
https://bugcrowd.com/vulnerability-rating-taxonomy/
https://bugcrowd.com/vulnerability-rating-taxonomy/
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Figure 1: Bugcrowd’s platform submission workflow.

(prioritized), and screened for duplicates and relevancy by

the platform’s team.18 Unique, valid vulnerabilities are then

integrated into the existing Software Development Life-cycle

(SDLC) tools to be fixed, and related reward payouts are

processed accordingly.

Data

The paper employs a unique data-set obtained through a Data

Transfer Agreement (DTA) between Tel Aviv University and

Bugcrowd. The data spans the entire period the company has

existed, i.e., from 2012, and includes all bug submission activi-

ties through May 2021. It contains information on the programs,

organizations, researchers, and bug submissions.

The data on programs covers public programs, which are

open to all researchers, as well as private programs, where

only invited researchers are allowed to participate and submit

vulnerabilities. There are trade-offs between the two types of

programs: There are likely more “eyeballs” looking for vulner-

abilities in public programs, while the limited competition in

private programs may lead to higher-quality researchers and

more research effort. As far as we know, this paper is among the

first to empirically analyze a bug bounty data-set that includes

researcher attributes and detailed submissions from private pro-

grams. Table C1 shows changes in active and new private and

public programs across entire calendar year periods. Table C2

shows the yearly distribution of active and new MBB and VDP

programs.

The organizational data includes the firm size, country of

origin, and when it first joined the platform. Many firms run

more than one program simultaneously, and for each, we have

its status, start/end dates, and whether it is public or private.

18 The process is described in https://docs.bugcrowd.com/cu

stomers/getting-started/with-bugcrowd/.

The data on researchers include characteristics such as coun-

try of origin, date of first submission, and relative rank (partially

reflecting past success).

The data on submissions specifies, among other things, the

following:

• The identification of the submitter;

• Date and time of the submission;

• The program type (MBB or VDP) and whether it is private

or public;

• Whether the submission was valid, and if so, whether it was

unique or a duplicate;

• The amount paid (in US dollars);

• The number of points rewarded;

To focus on the effect of the exogenous COVID-19 shock,

we examine five time periods from 2017-21.19 Each period in-

cludes three full months of activity from March 1 to May 31

of the respective year. We argue that the COVID-19 shock

was the strongest during the 2020 three-month period, as in-

dicated by multiple governmental resources. The United States

Department of Transportation statistics show vehicle miles trav-

eled were the lowest during this period.20 Also, the United

Nations statistics division report shows global manufacturing

was the lowest during the first few months of the pandemic.21

According to the US Bureau for Labor Statistics, the initial

pandemic-related shock was primarily apparent as an increase

in separations of employees from their payroll for any reason. It

rose from 5.7 million in February 2020 to a 16.3 million historical

high in March 2020, and 11.5 million (second highest) in April

19 The platform was much smaller before 2017; hence, we

started our examination that year.
20 https://www.bts.gov/covid-19/daily-vehicle-travel.
21 https://unstats.un.org/unsd/ccsa/.

https://docs.bugcrowd.com/customers/getting-started/with-bugcrowd/
https://docs.bugcrowd.com/customers/getting-started/with-bugcrowd/
https://www.bts.gov/covid-19/daily-vehicle-travel
https://unstats.un.org/unsd/ccsa/
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2020.22 Figure 2 best illustrates the shock showing three-month

moving averages of flows into and out of employment from 2017

through 2021. Hence, we define March 1 to May 31 of 2020 as

the “COVID period” and include the same period in all other

years to exclude seasonality effects.

Figure 2: Flows into and out of employment from 2017-21,

three-month moving average, seasonality adjusted (US Bureau

of Labor Statistics).

Heuristic Model

Using the data-set provided by Bugcrowd, we examine the effect

of an exogenous external shock (COVID-19) on the Bugcrowd

platform. We use a heuristic demand, supply, and equilibrium

price model to motivate our analysis. First, we define the prod-

uct and its price while referring to the “tournament” structure

of program rewards.

We define the product as a valid vulnerability submission

by a researcher to a participating program. While looking for a

vulnerability, researchers are imperfectly informed about the ac-

tivities of other researchers who may be searching for the same

vulnerability. As a result, there may be duplicate valid sub-

missions, only one of which earns a payment. Therefore, the

product’s price is the expected payment, which we define em-

pirically as the average payment for a valid submission. The

underlying simplifying assumption is that ex-ante, every valid

submission has an equal chance of succeeding.

With these definitions in hand, consider the heuristic model

in Figure 3.23 The horizontal axis measures the total num-

ber of valid submissions over some period, and the vertical

axis measures the average payment for a valid submission.

The upward-sloping supply curve recognizes that if the price

is higher, then researchers will devote more effort to search-

ing for vulnerabilities, and more researchers will participate in

more programs. The downward-sloping demand curve similarly

22 https://www.bls.gov/blog/2022/labor-market-dynamic

s-during-the-covid-19-pandemic.htm.
23 Figure 3 also shows a rightward shift of the supply curve
associated with the COVID-19 shock, as discussed later.

recognizes that, under more favorable terms, companies might

expand the scope of programs to cover more vulnerabilities and

submit more programs to the platform. The equilibrium price

brings these two sets of incentives into balance.

Figure 3: Supply and demand curves for valid submissions on a

bug bounty platform.

Submissions are either valid or not; valid submissions can be

either unique or duplicate. A feature of our framework is that

the number of valid submissions (quantity) can be decomposed

into the total number of submissions multiplied by the accu-

racy of submissions, defined as the ratio of valid submissions to

total submissions. Bugcrowd follows accuracy, as higher values

indicate that the researchers are more vigilant and concise with

their submissions, lowering the programs’ costs associated with

processing submissions. The number of discovered vulnerabili-

ties, i.e., unique and valid submissions that are paid a monetary

reward, in turn, equals the number of valid submissions times

the probability of winning with a valid submission. This prob-

ability depends on the number of duplicate valid submissions

and is calculated as the paid-to-valid submissions ratio.24

We examine how the COVID-19 shock impacted these and

other relevant variables derived from the Bugcrowd data-set.

Based on the heuristic model, our main conclusion is that the

COVID-19 shock shifted the supply curve to the right, had a

relatively minor impact on demand, and resulted in a significant

decline in the average price of a valid submission, as illustrated

in Figure 3.

24 Our primary focus is on the equilibrium effects of a shift

in the supply curve, for which valid submissions are a natural
quantity variable. On the other hand, unique and valid submis-

sions are a more natural quantity for the demand curve because

organizations have no value for duplicates. Hence, an appropri-
ate transformation, accounting for the probability of winning, is

required to re-express demand in terms of the number of valid

submissions.

https://www.bls.gov/blog/2022/labor-market-dynamics-during-the-covid-19-pandemic.htm
https://www.bls.gov/blog/2022/labor-market-dynamics-during-the-covid-19-pandemic.htm
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Table 1. Summary of propositions: The effect of COVID-19 exogenous shock across the heuristic model components.

Research Questions Related Findings

Supply Side

What was the COVID-19 effect on the supply of submissions and

active researchers?

Proposition 1: There was a significant increase in the number of

submissions and active researchers during the COVID-19 shock.

Both values dropped back post-COVID.

Demand Side

How did COVID-19 affect the demand generated by private and

public active programs?

Proposition 2: The number of active private programs grew

significantly during the COVID period, while public programs

showed no evidence of a COVID-19 effect.

Equilibrium Price

How did COVID-19 affect the probability of earning a monetary

reward (researcher incentives)?

Proposition 3: The probability of earning a reward given a valid

submission declined during the COVID period and bounced back

post-COVID.

What was the COVID-19 effect on the average rewards for paid

submissions?

Proposition 4: The COVID-19 effect on rewards of paid submis-

sions was insignificant, indicating a lack of meaningful changes

in the organizations’ compensation strategy.

What was the COVID-19 effect on expected rewards for valid

submissions?

Proposition 5: There was an economically meaningful negative

effect on rewards of high-priority valid submissions during the

COVID period.

What was the relative supply-side vs. demand-side effect on the

expected rewards for valid submissions?

Proposition 6: The decline in the expected rewards during the

COVID period is mostly associated with supply-side effects.

Productivity View

What was the COVID-19 effect on the productivity of uniquely

discovered vulnerabilities?

Proposition 7: The massive increase in submissions did not result

in a significant growth in the number of unique vulnerabilities

discovered.

The Effect of COVID-19 Exogenous Shock

In this section, we empirically explore the effect of the COVID-

19 shock on the supply and demand sides of the market and

then discuss overall equilibrium changes. Before we begin, it

is important to note that there is very little (if any) market

power on either side of the market. The top 100 researchers in

2020 earned only 24% of total rewards, and the top 10 programs

accounted for only 33% of annual 2020 payments (Table C3).

We analyzed the three-month data (March 1 - May 31) for 2017-

21 to overcome any seasonality effects. Table 1 summarizes our

research questions and related findings.

The Supply Side

We start with the most prominent effect of the COVID-19 shock.

Figure 4 shows year-over-year (YoY) changes in the number

of researchers and submissions during the three-month periods

for 2017-21. While the supply side of the platform experienced

steady growth from 2017 to 2019, there was a significant in-

crease in supply-side activity during the 2020 COVID period.

Specifically, total submissions increased from 21,157 in 2019 to

53,098 in 2020, representing a 151% growth. This growth rate

during the COVID period is much larger than in previous pe-

riods. Moreover, in the subsequent 2021 period, there was a

significant drop in the number of submissions to 30,955 submis-

sions. In terms of the number of active researchers, there was a

72% growth in the number of active researchers between 2019

and 2020, compared with a 43% growth between 2017-18 and a

53% growth between 2018-19.

Proposition 1. There was a significant increase in the num-

ber of submissions and active researchers during the COVID-19

shock. Both values dropped back post-COVID.

Table C4 clearly shows that this vast increase in submissions

was primarily driven by researchers who joined the platform

in 2020; they made 20,118 submissions (38% of the total). By

comparison, in 2019 and 2021, there were only between 6,000

and 7,000 submissions made by new researchers.

The number of valid submissions surged 155% during the

COVID period, from 13,083 to 33,304. An increase that com-

pletely dwarfs the increases between 2017-18 (38%) and 2018-19

(51%). Furthermore, in 2021, the number dropped to 16,460

valid submissions (a 51% decline). Interestingly, this huge in-

crease in valid submissions was primarily driven by researchers

who joined during the COVID period and made 13,163 valid

submissions. In comparison, new researchers in 2019 and 2021

made 2,952 and 2,939 valid submissions during their first year

on the platform.25

Geographically, the most significant increase in submissions

during the COVID period came from researchers in India and

25 The average number of submissions for an active researcher

increased from 7.18 in 2019 to 10.45 in the 2020 COVID period
(a 45% growth), further emphasizing the supply curve shift.
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Turkey. In particular, submissions from India soared from 9,335

in 2019 to 31,673 in 2020, an increase of more than 200%.

Submissions from Turkey skyrocketed from just 472 in 2019 to

7,724 in 2020. A significant decline followed this surge in the

subsequent period of 2021.

Figure 4: YoY changes in active researchers and the number of

submissions, three-month periods for 2017-21.

The analysis above suggests that the COVID-19 shock at-

tracted many more researchers to participate in bug bounty

programs, likely because there was a decrease in the option of

a full-time job outside. If this is at least a partial driver of the

effect we observe, one would expect the activity level of the

researchers who joined during the COVID period to plummet

significantly in 2021, when many companies were hiring again.

We, therefore, look at the number of submissions of the COVID

period cohort in the post-COVID era and compare it to the

number of submissions of other cohorts who joined the platform

before the pandemic.

Figure 5 displays the YoY changes in the activity level of

researchers on the platform (the number of submissions) based

on the year they joined. The graph highlights the differences in

activity levels during COVID and post-COVID (i.e., the number

of submissions in 2021 compared to 2020) as well as between the

first and second years of researchers’ activity.

Researchers who joined the platform during the COVID pe-

riod made significantly fewer submissions in 2021. Specifically,

they made 89% fewer submissions in this post-COVID period.

This decline was exceptionally large relative to other cohorts in

their second year on the platform. For comparison, there was a

53%, 43%, and 62% drop for the 2017, 2018, and 2019 cohorts

between their first and second years.

The Demand Side

Next, we examine the demand side of the platform. Table C5

presents the changes in active and new programs for various

program types across the three-month periods between 2017-21.

During the COVID period, there has been a rise in the num-

ber of new programs and active programs (those that received

at least one submission) compared to previous years. Interest-

ingly, the increase is not symmetric across public and private

programs.

Figure 5: YoY changes in submissions for researchers who

joined the platform during the three-month periods of 2017-20.

Changes were measured between the COVID and post-COVID

periods and the first and second years of joining.

Proposition 2. The number of active private programs grew

significantly during the COVID period, while public programs

showed no evidence of a COVID-19 effect.

Table C5 shows an overall upward trend in the total number

of active private programs, averaging 63% a year before the

COVID period. Between the 2019 and 2020 periods, however,

there was a 91% increase in active private programs, followed by

a moderate rise of 31% in the following year. In contrast, public

programs had a more moderate overall upward trend but showed

no evidence of a COVID effect in 2020. Given that most new

researchers did not initially have access to private programs, the

supply increase greatly exceeded the demand.

Another possible avenue for demand-side effects is a change

in rewards programs pay for discovered vulnerabilities. The

Bugcrowd platform recommends ranges for payments rewarding

different priority submissions. Furthermore, it encourages es-

tablished programs, for which new vulnerabilities may be more

challenging to discover, pay at the higher end of the range,26

and add bonuses outside the range for particularly significant

vulnerabilities.27 However, programs may decide what exact

reward to pay within each range and activate some judgment

about classifying the priority of submissions. Given such discre-

tion, the average reward per paid submission might be viewed

as a demand-side variable, possibly shifting during the COVID

period. We defer a discussion of this possibility to the next

section.

Equilibrium Outcome

The discussion above suggests that the COVID-19 shock shifted

the supply curve to the right – dramatically increasing the num-

ber of researchers on the platform. On the demand side, there

was a moderate increase in active programs. The overall effect

in equilibrium outcomes may manifest itself as a decrease in the

probability of winning a reward, a reduction of actual rewards

26 https://www.bugcrowd.com/resources/guide/bugcrowds-d

efensive-vulnerability-pricing-model/.
27 https://docs.bugcrowd.com/customers/submission-manag

ement/rewarding/.

https://www.bugcrowd.com/resources/guide/bugcrowds-defensive-vulnerability-pricing-model/
https://www.bugcrowd.com/resources/guide/bugcrowds-defensive-vulnerability-pricing-model/
https://docs.bugcrowd.com/customers/submission-management/rewarding/
https://docs.bugcrowd.com/customers/submission-management/rewarding/
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paid by programs, or a combination of both. We will discuss

each in turn and then look at the combined effect referring to

MBB programs that compensate researchers with cash rewards.

Probability of Earning a Monetary Reward

Given the tournament structure of the market, an increase in the

number of valid submissions implies an increase in competition

for being the first to find a vulnerability and thus may decrease

the probability of winning a reward. Consequently, this may

negatively affect the researcher’s motivation to dedicate research

time and submit their findings.

Indeed, Figure 6 shows that the COVID-19 shock dramati-

cally affected the probability of winning a reward, represented

by the ratio of paid submissions to valid submissions. This ra-

tio ranged between 37-39 percent in 2017 and 2018 and 33-30

percent in 2019 and 2021, reflecting a slightly increased com-

petition among researchers relative to previous years. However,

the ratio fell significantly to 23% in 2020. It seemed the shock

essentially “threw” the platform out of the equilibrium it had

maintained for most of its existence.

Proposition 3. The probability of earning a reward given a

valid submission declined during the COVID period and bounced

back post-COVID.

This increased competition is observed for both public and

private programs but was especially dramatic in the case of

public programs, where the probability of winning a reward

given a valid submission was 18% in 2019 and 2021 but fell

to only 11% in 2020.28

Figure 6: Valid submissions during the three-month periods

of 2017-21. The paid-to-valid ratio indicates the probability of

earning a reward given a valid submission.

The COVID Effect on Submission Rewards

We further examine the increase in competition during COVID-

19 by looking at the actual submission payments. The first

regression in Table 2 captures the effect and significance of the

28 In the case of private programs, the probability of earning a

reward given a valid submission fell from 53% in 2019 to 37% in
2020.

COVID-19 shock on actual rewards by examining the interac-

tion of the COVID variable with submission priority for paid

submissions. The COVID dummy variable equals 1 for 2020 and

0 for all other three-month periods. The P1-P5 priority defini-

tions are by Bugcrowd and reflect the risk associated with the

discovered vulnerability.29 The coefficient of the COVID inter-

action with submission priority is statistically insignificant for

all submission priorities.

Proposition 4. The COVID effect on rewards of paid submis-

sions was insignificant, indicating a lack of meaningful changes

in the organizations’ compensation strategy.

Given that the probability of earning a reward for a valid

submission declined during the COVID period (Proposition 3),

we now look at the expected rewards for valid submissions. The

second regression in Table 2 measures the effect and significance

of the COVID-19 shock on those rewards by interacting the vari-

able of interest, COVID, with submission priority. As expected,

compared to the lowest priority P5 baseline, payments increase

with the submission priority. The COVID main effect for P1

valid submissions is a statistically significant average reduction

of $640. The effect diminishes as submission priority declines:

$216 for P2, $36 for P3, and statistically insignificant for P4

and P5.30

Proposition 5. There was an economically meaningful nega-

tive effect on rewards of high-priority valid submissions during

the COVID period.

Our results suggest that the COVID effect on expected re-

wards of valid submissions is present mainly in high-priority

submissions, emphasizing the missed opportunity to benefit the

organizations and the public with essential vulnerability fixes.

Furthermore, it highlights the need for the platform to control

the supply-demand equilibrium and maintain incentives for the

leading researchers to participate in the future.

As detailed in Appendix A, the results we report are robust

if we replace the selected COVID dummy with the continuous

government pandemic “Stringency Index” offered by Hale et al.

[22]. Furthermore, our findings are robust under different peri-

ods, accounting for all the submissions between January 2017

and May 2021 (the end of our data-set).

The Main Driving Factor

In general, the statistically significant and meaningful decline in

expected rewards shown in The COVID Effect on Submission

Rewards subsection can be driven by (i) an increase in the num-

ber of valid submissions (a supply-side effect), (ii) a decrease in

monetary rewards for paid submissions (both demand and sup-

ply side effects), or a combination of both. More concretely,

29 https://www.bugcrowd.com/glossary/vulnerability-pri

ority/.
30 No priority was listed for a small number of rewarded sub-

missions. Unlike our descriptive statistics in The Main Driving
Factor section, the regressions do not include submissions with

a missing priority field. Regardless, all our results remain
qualitatively unchanged.

https://www.bugcrowd.com/glossary/vulnerability-priority/
https://www.bugcrowd.com/glossary/vulnerability-priority/
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Table 2. COVID-19 effects regression table across the three-month periods. The COVID-19 shock is defined as the year 2020 period (a binary

variable).

(1) (2)

Priority=1 2628.066∗∗∗ (139.257) 1669.594∗∗∗ (22.737)

Priority=2 1255.319∗∗∗ (135.640) 823.738∗∗∗ (16.938)

Priority=3 285.728∗∗ (133.953) 212.481∗∗∗ (13.054)

Priority=4 5.875 (134.472) 48.069∗∗∗ (12.580)

COVID period -58.784 (214.659) -0.869 (15.247)

Priority=1 × COVID period -212.821 (230.430) -640.963∗∗∗ (38.111)

Priority=2 × COVID period -148.791 (221.447) -216.703∗∗∗ (28.695)

Priority=3 × COVID period 95.445 (218.237) -36.693∗ (21.632)

Priority=4 × COVID period 69.775 (218.888) -18.904 (19.596)

Constant 154.925 (132.325) 2.133 (9.532)

Observations 13302 46031

Adjusted R-squared 0.256 0.175

Regression (1): COVID-19 effect on actual rewards (paid submissions) interacted with P1-P5 submission priority.

Regression (2): COVID-19 effect on expected rewards (valid submissions) interacted with P1-P5 submission priority.

Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01.

the average reward for valid submissions can be decomposed as

follows:

Equation 1. (average reward for valid submissions) = (av-

erage reward for paid submissions) * (paid submissions/valid

submissions)

A combination of supply and demand factors most likely

drives changes in the first term. Changes in the second term

(the ratio) arguably are due exclusively to the supply side, i.e.,

the number of unique vulnerabilities discovered and the number

of valid duplicates.31 To populate the equation, we empirically

measure below the average reward for paid and valid submis-

sions and use the paid-to-valid submission ratio already shown

in Figure 6. Since rewards vary substantially across the impor-

tance (priority) of vulnerabilities, we delineated our data by

vulnerability priority, grouping P1 and P2 vulnerabilities into

a “higher-priority” category and P3-P5 vulnerabilities into a

“lower-priority” category.

As Figure 7 shows, the average reward for valid submissions

ranged between $256 and $340 during the 2017-19 period but

fell dramatically to just $166 in 2020 (a decline of 46% relative

to 2019). The average reward then rose to $246 in 2021. The

trend for higher-priority and lower-priority vulnerabilities was

similar but more prominent for high-priority vulnerabilities (see

the second regression of Table 2).

We present the average monetary reward for paid submis-

sions in Figure 8. As the figure shows, the average reward

decreased from $989 in 2019 to $744 in 2020 (a decline of 21%).

However, as shown in the first regression of Table 2, this decline

was not statistically significant.

During the COVID period, the paid-to-valid submissions ra-

tio fell significantly from 33% to 23% (a decline of 32%), while

the monetary rewards for paid submissions decreased by only

21%). Therefore, we conclude that the decline in the expected

31 We cannot think of demand-side factors that would cause a
decline in the paid-to-valid ratio.

Figure 7: Expected average rewards of MBB submissions by pri-

ority during the three-month periods of 2017-21 in Bugcrowd’s

bug bounty platform.

reward between 2019 and 2020 associated solely with supply-

side effects was 52% larger than the remaining residual decline,

attributed to a combination of supply and demand factors.32

Proposition 6. The decline in the expected rewards during the

COVID period is mostly associated with supply-side effects.

The demand and supply responses differ across higher and

lower-priority vulnerabilities. Specifically, while there was a

meaningful 23% drop in the average actual payment for higher-

priority paid submissions, rewards for lower-priority submissions

slightly increased (Figure 8). This strongly suggests that a shift

in the supply curve almost completely drove the decrease in

expected reward for valid lower-priority submissions. For higher-

priority vulnerabilities, the equilibrium outcome is likely a result

of combined supply and demand responses.

32 In Appendix B, we examine the VDP program type sepa-
rately and show that our results are qualitatively unchanged.



Economics of a Bug Bounty Platform 11

Figure 8: Actual average rewards of MBB submissions by pri-

ority during the three-month periods of 2017-21 in Bugcrowd’s

bug bounty platform.

In addition, as Table C6 shows, the demand and supply re-

sponses differ across public and private programs. For private

programs, the average actual payment dropped 26% between

2019-20, while for public programs, it dropped only 10%, in-

dicating the effect associated partially with the demand side

for public programs is significantly smaller. This aligns with

our demand-side findings, which show that active private pro-

grams exhibited a larger growth than public programs during

the COVID period. Furthermore, the paid-to-valid submission

ratio for public programs declined by 40% compared to a 29%

decline for private programs. Given that most new researchers

who joined the platform during the COVID period initially only

had access to public programs, the increase in supply for public

programs greatly exceeded the rise in demand.

Unique Vulnerabilities Discovered

While the number of valid submissions increased tremendously

during the COVID period, there was no significant increase

in the number of paid submissions between 2019 and 2020

(Figure 6).33 Since the number of paid submissions in MBB

programs is essentially the number of unique vulnerabilities

discovered, it reflects the increase in the number of unique vul-

nerabilities discovered. The percentage increase in the number

of paid vulnerabilities was essentially the same between 2018

and 2019 as the percentage increase between 2019 and 2020

(28%). This was primarily because, during the COVID period,

more researchers were competing over the same vulnerabilities,

especially in public programs. Although the number of valid

submissions to public programs skyrocketed from 5,558 in 2019

to 10,226 in 2020, the number of unique vulnerabilities discov-

ered (and hence paid for) was virtually unchanged (1,021 in 2019

vs. 1,136 in 2020.)

Proposition 7. The massive increase in the number of sub-

missions did not result in a significant growth in the number of

unique vulnerabilities discovered.

33 The number rose from 2,535 in 2018 to 3,250 in 2019 and
4,160 in 2020, before falling back to 2,675 in 2021.

Policy and Platform Implications

The exogenous shock we examined was significant and led to

a huge response on the supply side and a much smaller one

on the demand side. As a consequence, the equilibrium price

fell dramatically during the COVID period. One would expect

other bug bounty platforms to experience similar shifts in de-

mand, supply, and equilibrium price. Moreover, we believe the

results do not depend on the specific rules of engagement and

tournament structure that bug bounty programs exhibit. The

COVID-19 shock size is dramatic and does not occur often.

Still, there are examples of significant shocks that dramatically

changed the equilibrium of an existing ecosystem. For instance,

consider the entry of ride-sharing services (like Uber and Lyft)

into the previously tightly regulated market, primarily limited

to a fixed number of taxis. Similar to our case, there was a huge

increase in supply, which led to a fall in the equilibrium price of

ride services [23, 24]. The change in the ride-sharing platform

was permanent – and led to a new equilibrium that persisted

over time. The exogenous shock in the platform we studied was

temporary, and while some of the effects remained once the

COVID pandemic was over, gradually, over time, supply fell,

demand increased, and expected prices rose.

Regarding the market for vulnerabilities, past research has

suggested that the grey market for sharing exploits and vulner-

abilities is more lucrative than the black market, and both are

distinctly more lucrative than the white market [25]. The signif-

icant supply response we identified from the COVID-19 shock

implies that more bug bounty programs and larger platforms

might affect this dynamic. In particular, increased demand

for researchers and vulnerability submissions would likely drive

more transactions in the white market rather than the black or

grey markets.

The vast number of valid submissions in the 2020 COVID

period suggests that had there been a more significant increase

in demand, many more unique vulnerabilities would have been

likely discovered. If the demand response to the shock in both

MBB and VDP program types had been similar to the supply

response, the number of unique vulnerabilities identified by re-

searchers in 2020 could have been 64% higher than the actual

number.34 This “counterfactual” illustrated in Figure 9 seems

reasonable since all software contains vulnerabilities, and “there

will always be more vulnerabilities in a given piece of software”

[26, p. 17]. This assumption also implies that some level of du-

plication is desirable. However, the relatively low ratio of unique

to valid submissions during the COVID period might discourage

researchers from searching hard for vulnerabilities.

From a gig economy perspective, platforms like Uber, Up-

Work, and Bugcrowd offer tremendous opportunities for em-

ployees during turbulent times. Indeed, our analysis suggests

that many researchers had reached out to bug bounty platforms

during the COVID period when the market experienced a mas-

sive decline in job opportunities. The flexibility and low barriers

to entry of gig work platforms allowed skilled researchers to

supplement earnings by finding vulnerabilities.

From a policy perspective, the limited demand response in

terms of an increase in the number of programs may be seen

34 As shown in Table C7, given a similar response, the ratio of

unique-to-valid submissions would have been 57% (the average
for 2019 and 2021) rather than falling to 35%.
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Figure 9: Counterfactual impact evaluation for the number of

unique vulnerabilities discovered in the 2020 COVID period.

as a missed opportunity. A policy encouraging the quick launch

of new programs would likely have benefited researchers and

organizations. Discovering and patching vulnerabilities in prod-

ucts and services also creates a positive external benefit (beyond

the platform) because a compromised asset in one firm, due to

a vulnerability, might cause a supply chain attack that affects

other organizations and individuals elsewhere. As Moore [27, p.

107] writes, “Insecurity creates negative externalities.” See also

Varian [28] and Jean Camp and Wolfram [29], who were among

the first to make this point.

Policy-makers could sponsor, encourage, or mandate bug

bounty programs in governmental agencies. The platform could

incentivize firms to introduce new programs and offer the means

and underlying technology to do it quickly. In addition, organi-

zations could widen the scope of existing programs to include

more product/service areas, thus increasing the possible number

of vulnerabilities to discover.

The platform could also help with information asymmetry

caused by researchers not knowing where their peers are active

and which programs are overwhelmed with submissions due to

the tournament structure of bounty programs. If the platform

signals researchers how busy a program is, it might help re-

balance supply with demand. The signal could indicate, for

example, that a program has a low paid-to-valid ratio, which

means a high percentage of duplicates. Finally, researchers may

cooperate to reduce duplicates and work in teams, utilizing col-

laboration options on the platform.35 Taken together, these

policies might even encourage some black-hat researchers to join

the program and work legally.
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gers on Uber, Lyft, and other transportation network

companies. Econ Journal Watch, 12(3), 2015.

24. Farshad Kooti, Nemanja Djuric, Mihajlo Grbovic, Vladan

Radosavljevic, Luca Maria Aiello, and Kristina Lerman.

Analyzing uber’s ride-sharing economy. 26th International

World Wide Web Conference 2017, WWW 2017 Compan-

ion, pages 574–582, 2017. doi: 10.1145/3041021.3054194.

URL https://dl.acm.org/doi/10.1145/3041021.3054194.

25. Lillian Ablon and Martin Libicki. Hackers’ Bazaar: The

Markets for Cybercrime Tools and Stolen Data. Defense

Counsel Journal, 82(2):143–152, 2015. ISSN 0895-0016. doi:

10.12690/0161-8202-82.2.143.

26. Jonathan M Spring. An Analysis of How Many Undiscov-

ered Vulnerabilities Remain in Information Systems. Tech-

nical report, CARNEGIE-MELLON UNIV PITTSBURGH

PA, 2022. URL https://resources.sei.cmu.edu/librar

y/asset-view.cfm?assetid=875310.

27. Tyler Moore. The economics of cybersecurity: Principles

and policy options. International Journal of Critical Infras-

tructure Protection, 3(3-4):103–117, 2010. ISSN 18745482.

doi: 10.1016/j.ijcip.2010.10.002. URL https://www.scienc

edirect.com/science/article/pii/S1874548210000429.

28. Hal Varian. System Reliability and Free Riding. In L Jean

Camp and Stephen Lewis, editors, Economics of Informa-

tion Security, pages 1–15. Springer US, Boston, MA, 2004.

ISBN 978-1-4020-8090-6. doi: 10.1007/1-4020-8090-5{\ }1.
URL https://doi.org/10.1007/1-4020-8090-5_1.

29. L Jean Camp and Catherine Wolfram. Pricing security:

A market in vulnerabilities. In Economics of information

security, pages 17–34. Springer, 2004.

Appendices
COVID Effect Robustness Checks

We test for robustness by replacing the COVID binary vari-

able with the government pandemic “Stringency Index” by Hale

et al. [22]. This index, listed per day and by country as part

of The Oxford COVID-19 Government Response Tracker (Ox-

CGRT), “records the strictness of ‘lockdown style’ policies that

primarily restrict people’s behaviour.”36 The index is an inte-

ger value between 0 and 100, with 0 indicating the pre-COVID

era and 100 the strictest possible governmental policies. We

set the Stringency Index based on the submission date and the

researcher’s country of origin.

In the first regression of Table A1, we interact the index with

priority across the five periods from 2017-21. The priority coeffi-

cient increases consistency for higher priority (P5 lowest priority

being the baseline), reflecting the platform’s official payment

structure favoring higher priority submissions. The Stringency

Index’s main effect for P1 valid submissions is an average re-

duction of $4.6 in payments for each index point increase. The

effect for P2 submission declines by $1 on average for each index

point increase. For the lower P3-P5 submissions, the effect of

the Stringency Index is insignificant.

Figure A1 illustrates this effect based on the average index

value across the 2017-19 periods (pre-COVID era where the in-

dex was zero), the COVID 2020 period (with an average index

of 77.15), and the 2021 period (with an average index of 67.51).

Hence, we interpret the COVID average effect for P1 submis-

sions as a decline of $354 in dollar payments for the 2020 period

and a $310 decrease for the 2021 period. For P2 submissions,

36 https://www.bsg.ox.ac.uk/research/covid-19-governmen

t-response-tracker.
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Table A1. COVID-19 effects regression table. COVID-19 is defined by the OxCGRT Stringency Index (a continuous variable).

(1) (2)

Priority=1 1595.091∗∗∗ (24.959) 1615.731∗∗∗ (11.104)

Priority=2 787.695∗∗∗ (19.356) 645.992∗∗∗ (8.705)

Priority=3 206.623∗∗∗ (15.436) 207.423∗∗∗ (6.924)

Priority=4 47.560∗∗∗ (14.711) 44.231∗∗∗ (6.527)

Stringency Index -0.020 (0.186) -0.030 (0.101)

Priority=1 × Stringency Index -4.569∗∗∗ (0.475) -2.179∗∗∗ (0.267)

Priority=2 × Stringency Index -1.097∗∗∗ (0.347) -0.406∗∗ (0.189)

Priority=3 × Stringency Index -0.190 (0.261) -0.080 (0.143)

Priority=4 × Stringency Index -0.179 (0.238) -0.142 (0.128)

Constant 2.709 (11.521) 3.820 (5.164)

Observations 45774 152999

Adjusted R-squared 0.169 0.204

Regression (1): Stringency Index interacted with P1-P5 submission priority across the three-month periods.

Regression (2): Stringency Index interacted with P1-P5 priority across all submissions between January 2017 through May 2021

(the end of our data-set).

Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01.

the decline due to the COVID effect is $86 for 2020 and $75 for

the 2021 period.

Figure A1: Table A1 regression (1) effects: average rewards for

valid submissions, based on the average Stringency Index for

the three-month periods (pre-COVID 2017-19, COVID 2020,

and post-COVID 2021.

For further robustness, we look at all valid submissions dur-

ing the entire period between January 2017 and May 2021 rather

than just the three-month submissions. The results, detailed

in Table A1, are qualitatively unchanged. As before, we inter-

act the Stringency Index with submission priority to explore

whether the COVID effect differs. The index’s main effect for

P1 valid submissions is an average reduction of $2.2 in pay-

ments for each index point increase. The average index value

across all of 2020 is 64.47, including the pre-COVID months of

that year. The average index value for the 2021 submissions is

higher (67.31) partially because our data-set ends in June 2021

and does not reflect all the pandemic wave cycles. Hence, we

interpret the COVID average effect as a decline of $142 and

$149 in dollar payments for the P1 valid submissions of 2020

and 2021, respectively. The effect is lower for P2 priority sub-

missions (a decline of $28 and $29 in payments for 2020 and

2021, respectively) and insignificant for P3-P5 priorities.

Note that the COVID effect is higher in regression (2) of

Table 2 when measured by the COVID dummy across the

five three-month periods, compared to Table A1 regression (1),

which uses the Stringency Index for the same periods. We argue

that while the index reflects the governmental policies and re-

sponses, it does not capture the private market response nor the

labor market dynamics reflected in Figure 2. Furthermore, the

COVID effect in Table A1 is lower when measured across all sub-

missions in regression (2) compared to the three-month periods

in regression (1). This difference illustrates the dynamics of the

2020 shock period compared to the ongoing COVID situation:

Though the average Stringency Index is nearly identical, the

effect is higher during the three-month shock period. Subject to

their business sector and industry, many companies may have

responded to the initial shock by adopting technologies such as

remote access and video conferencing. We may assume many

security researchers who generate the supply on the bug bounty

platform work for those tech-savvy companies. Therefore, lim-

iting the analysis to the first three months of the pandemic will

better reflect the shock in this context.

Separating Monetary and Point Rewards

Below, we complete the analysis of the two different program

types: (i) Managed Bug Bounty Programs (MBBs) as ana-

lyzed in the Equilibrium Outcome section, and (ii) Vulnerability

Disclosure Programs (VDPs) analyzed below.

The results for VDPs are particularly interesting as point

rewards bear no direct monetary costs to organizations. The

number of points rewarded for a unique discovered vulnera-

bility is predefined per priority by the platform. VDPs also

reward valid duplicates but with fewer points.37 However,

Bugcrowd removed the point rewards for low-priority duplicate

37 https://docs.bugcrowd.com/researchers/receiving-rew

ards/getting-rewarded/.

https://docs.bugcrowd.com/researchers/receiving-rewards/getting-rewarded/
https://docs.bugcrowd.com/researchers/receiving-rewards/getting-rewarded/
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submissions between the COVID 2020 and post-COVID 2021

periods to prevent “point harvesting,” which yields no value to

programs.38

Figure B1 shows that the average points rewarded for unique

VDP submissions are nearly identical between 2019 and 2021,

reflecting the fixed-point reward system and lack of demand-side

effect. However, average points for valid submissions fell from

eight points during the 2017-19 periods to just four points in

2020 before bouncing back to 13 points in 2021.

Figure B1: Average rewards for unique and valid submissions,

for VDPs only, during the three-month periods of 2017-21 in

Bugcrowd’s bug bounty platform.

The 50% points decline between 2019 and 2020 could be

attributed to two supply-side factors. The first and more promi-

nent is the 58% drop in the ratio of unique-to-valid VDP

submissions (see Figure B2).39 The second is a slightly higher

percentage of low-priority valid submissions in the COVID pe-

riod compared to 2019. The average point increase in 2021 was

presumably affected by the increasing unique-to-valid submis-

sion ratio that bounced back to 62%, but also by the change

in the points reward policy, which eliminated the rewards for

low-priority duplicate submissions.

We summarize by noting that, given that organizations could

not alter the number of points rewarded in VDPs, the equilib-

rium price change during the COVID period is attributed solely

to supply-side factors.

38 For more information on this policy change, see https://

www.bugcrowd.com/blog/update-to-bugcrowd-points-syste

m/. After the end date of our data-set, Bugcrowd completely
disabled points on VDPs, as noted in https://www.bugcrowd.c

om/blog/how-bugcrowd-sees-vulnerability-disclosure-pro

grams-and-points/.
39 The unique-to-valid ratio indicates the probability of earning
more points due to a unique vulnerability discovered.

Figure B2: Valid submissions for VDP programs only (unique

and duplicate) during the three-month periods of 2017-21.

https://www.bugcrowd.com/blog/update-to-bugcrowd-points-system/
https://www.bugcrowd.com/blog/update-to-bugcrowd-points-system/
https://www.bugcrowd.com/blog/update-to-bugcrowd-points-system/
https://www.bugcrowd.com/blog/how-bugcrowd-sees-vulnerability-disclosure-programs-and-points/
https://www.bugcrowd.com/blog/how-bugcrowd-sees-vulnerability-disclosure-programs-and-points/
https://www.bugcrowd.com/blog/how-bugcrowd-sees-vulnerability-disclosure-programs-and-points/
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Supporting Tables

Table C1. Program perspective: changes in active and new program types (private and public) across entire calendar year periods (all programs).

Program type No. of active programs1 No. of new programs2

2017 2018 2019 2020 2017 2018 2019 2020

Public 105 132 145 151 35 33 33 25

Private 252 357 525 1,155 189 243 336 821

Total 357 489 670 1,306 224 276 369 846

1Programs with one or more submissions during the period.

2Programs that their first submission occurred during the period.

Table C2. Program perspective: changes in active and new program types (MBB and VDP) across entire calendar year periods (all programs).

Program type No. of active programs1 No. of new programs2

2017 2018 2019 2020 2017 2018 2019 2020

VDP 110 120 158 607 80 74 93 490

MBB 247 369 512 699 144 202 276 356

Total 357 489 670 1306 224 276 369 846

1Programs with one or more submissions during the period.

2Programs that their first submission occurred during the period.

Table C3. Market perspective: Percentage of total rewards for top 100 researchers and top 10 programs across entire calendar year periods.

Researcher cohort Percentage of total rewards1 Program cohort Percentage of total rewards2

2017 2018 2019 2020 2017 2018 2019 2020

Top 100 researchers 43% 34% 23% 24% Top 10 programs 42% 39% 42% 33%

Other researchers 57% 66% 77% 76% Other programs 58% 61% 58% 67%

1A yearly view on total rewards share of top 100 researchers (supply side).

2A yearly view on total rewards share of top 10 programs (demand side).
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Table C4. Researcher experience: submissions and rewards by the year a researcher joined, across the three-month periods (all programs).

Year researcher joined1 No. of submissions Percentage of cohort submissions from yearly total

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

2017 researchers 1,630 770 695 614 427 19% 6% 3% 1% 1%

2018 researchers 3,182 1,806 1,270 1,085 25% 9% 2% 4%

2019 researchers 6,142 2,308 995 29% 4% 3%

2020 researchers 20,118 2,177 38% 7%

2021 researchers 6,832 22%

Year researcher joined No. of valid submissions2 Valid submissions / total submissions ratio3

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

2017 researchers 917 500 476 389 281 56% 65% 68% 63% 66%

2018 researchers 1,857 1,118 851 687 35% 47% 54% 63%

2019 researchers 2,952 1,415 595 23% 26% 60%

2020 researchers 13,163 1,092 65% 50%

2021 researchers 2,939 43%

1Only researchers who joined during the three-month periods are listed in this view.

2Valid submissions are the sum of paid and accepted-duplicate submissions.

3The valid-to-total submissions ratio reflects the accuracy level of submissions.

Table C5. Program perspective: changes in active and new programs across the three-month periods (all programs).

Public programs No. of active public programs Percentage from total active public programs

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

Active from past period1 23 27 24 31 35 28% 25% 20% 24% 24%

New between periods2 53 73 85 95 107 64% 68% 72% 73% 72%

New this period3 7 7 9 5 6 8% 7% 8% 4% 4%

Total public active 83 107 118 131 148 100% 100% 100% 100% 100%

Private programs No. of active private programs Percentage from total active private programs

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

Active from past period 11 18 33 60 91 10% 11% 12% 12% 13%

New between periods 56 84 152 271 412 51% 50% 56% 52% 61%

New this period 43 66 86 186 174 39% 39% 32% 36% 26%

Total private active 110 168 271 517 677 100% 100% 100% 100% 100%

1Programs that were active in the previous three-month period, with one or more submissions during the current period.

2Programs that started between the previous three-month and current periods.

3New programs with first submission during the period.

Table C6. Program perspective: Changes in public-private programs across the three-month periods (MBB programs only).

Program Type Average rewards for paid submissions Paid/valid submission ratio1

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

Public $ 698 $ 845 $ 777 $ 701 $ 790 26% 23% 18% 11% 18%

Private $ 706 $ 879 $ 1,023 $ 761 $ 901 51% 61% 53% 37% 43%

Total $ 703 $ 868 $ 946 $ 744 $ 868 37% 39% 33% 23% 30%

1The ratio of paid submissions to valid submissions represents the probability of being paid, given the submission is correct.

Table C7. Program perspective: Changes in accepted-duplicate, unique, and valid submissions across the three-month periods (all programs).

Valid submissions Year-Over-Year growth (percentage change)

2017 2018 2019 2020 2021 2017-2018 2018-2019 2019-2020 2020-2021

Accepted-duplicate submissions 2,227 2,944 6,081 21,632 6,374 32% 107% 256% -71%

Unique submissions 4,064 5,720 7,002 11,672 10,086 41% 22% 67% -14%

Valid submissions 6,291 8,664 13,083 33,304 16,460 38% 51% 155% -51%

Unique/valid ratio 65% 66% 54% 35% 61% 2% -19% -35% 75%
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